Blindflare: A Zero-Trust Encrypted Web System

Fang Judo
bling-glare-motion@1337.legal

www.blindflare.org

Abstract. Modern applications are built on an implicit trust that servers will
behave. They are trusted to hash your password, store your secrets, protect your
identity, and respect your privacy. This trust is often misplaced. Every compromise
from database leaks to insider threats reinforces this. Blindflare introduces a
system where the server is stripped of all cryptographic authority. Clients
generate their own ECC keypairs. All data encryption and decryption is performed
locally. Authentication is key-based. Storage is encrypted. Passwords are never
transmitted. We define a new model called ztStorage (zero-trust storage).
Encrypted blobs are stored on a remote server but the encryption is fully client-
side, with the server having zero knowledge of the contents. This architecture
ensures that even a fully compromised backend yields no plaintext, no password,
and no metadata leakage.By encrypting all data above the transport layer,
Blindflare also eliminates plaintext exposure at the reverse proxy layer especially
from gateways like Cloudflare, which terminate TLS and can otherwise view, log,
or alter traffic when the requests are decrypted by there gateways.

1. Introduction

The evolution of centralized web services has created a fragile and overly trusting security
model. In today’s applications, backends routinely receive plaintext credentials, session tokens,
and user data, and are expected to handle them securely. Unfortunately, frequent breaches,
misconfigurations, and reliance on third-party services have shown that this model is
increasingly untenable. To address these challenges, systems must be redesigned around the
principle of cryptographic ownership rather than relying on server-side policy enforcement.
Blindflare embraces this principle by ensuring that servers only store data but never understand
it. It achieves this by employing a secure authentication protocol where clients generate their
own ECC keypairs and authenticate through key-based mechanisms, eliminating the need to
transmit passwords or private keys. All hashing and key derivation are performed client-side
during login and registration flows, ensuring that sensitive information is never exposed to the
server. Furthermore, Blindflare introduces a novel zero-trust storage model, called ztStorage,
which stores encrypted data blobs remotely but with encryption fully handled by clients. This
approach guarantees that even if the server is fully compromised, no plaintext data, passwords,

or metadata can be leaked. By encrypting data above the transport layer, Blindflare also
prevents exposure of plaintext data at reverse proxies like Cloudflare, which commonly
terminate TLS and can otherwise access or log traffic. Thus, the system eliminates any server-
side plaintext data handling, including password management, reinforcing a security model
where the client controls authentication, encryption, and validation entirely.

2. Cryptographic Foundations
Blindflare relies on Elliptic Curve Cryptography (ECC), specifically the secp256k1 curve, which is

widely used in Bitcoin, for public key derivation and digital signatures. Each client generates
cryptographic keys using the BIP39 mnemonic standard, providing users with a human-readable
backup mechanism while maintaining cryptographic security. The key generation process begins
with the creation of a 12 or 24-word BIP39 mnemonic phrase using a cryptographically secure
random number generator, providing 128 or 256 bits of entropy respectively. This mnemonic is
then converted to a 512-bit seed using PBKDF2-SHA512 with 2048 iterations, using the
mnemonic as input and "mnemonic" plus an optional passphrase as salt, following the BIP39
specification. The first 256 bits of the derived seed serve as the private key k, from which the

public key K is derived as a point on the secp256k1 curve:

Where G is the generator of the curve. This approach ensures compatibility with existing Bitcoin
and cryptocurrency tooling while providing users with familiar backup mechanisms. The client
retains the private key securely in encrypted local storage, but users can backup and restore
their entire cryptographic identity using only the BIP39 mnemonic phrase. This human-readable
format eliminates the complexity of managing raw cryptographic keys while maintaining the
same security properties. The optional BIP39 passphrase, sometimes called the "25th word,"
provides an additional layer of security, creating a two-factor authentication mechanism where
both the mnemonic and passphrase are required for key recovery. For users choosing to log in
with a traditional password, the system maintains backwards compatibility by deterministically
deriving a BIP39 mnemonic from the password and a salt value using a strong key derivation
function such as Scrypt, Argon2, or PBKDF2. The derived mnemonic then follows the standard
BIP39 to seed to private key flow described above. This process enables the regeneration of the
same private key locally without ever transmitting the password, while still providing users with

mnemonic backup capability. Crucially, the private key is never transmitted to the server under

any authentication method. During authentication, the user sends a hash of their private key to
the server. Specifically, the private key is hashed using SHA-512 to produce a fixed-length digest,
which the server uses to identify the user without ever receiving the raw private key, password,

or mnemonic phrase.

3. Authentication and Login Protocol

The authentication process begins with the client generating a new ECC keypair. Instead of
sharing a password or private key with the server, the client hashes its private key using a
cryptographic hash function, such as SHA-512, and sends only the resulting digest along with the
associated public key. The server stores this hash and public key, and uses the hash to recognize
and verify users during login. At no point does the server receive or store passwords or
unencrypted keys all sensitive operations occur entirely on the client side. After successful
identification, the server responds by issuing a session token and its own public key. A
temporary shared secret is then established between the client and server using Elliptic Curve
Diffie-Hellman (ECDH), calculated by combining the client’s private key with the server’s public
key:

shared = K jient * Kserver

This shared secret acts as the symmetric key for all subsequent encrypted API communications
between the client and server. Both request and response payloads are encrypted using this
key, ensuring confidentiality even if transport encryption is intercepted or terminated early by
intermediaries.

4. ztStorage: Zero-Trust Client-Side Encrypted Blobs

In Blindflare, clients construct data “blobs” entirely on their own devices before uploading to the
server. Imagine preparing an object containing fields like name, email, and notes all serialized
into a compact form and encrypted with a symmetric key using a modern algorithm like
AES-GCM. This encrypted payload is what gets uploaded. To ensure that only the rightful owner
can decrypt the data, that symmetric key itself is encrypted using the user's public key through
an ECIES-like mechanism. Thus, the server stores both the encrypted payload and the encrypted
key together. Before uploading, the client also signs the ciphertext with its private key using
ECDSA over a SHA-256 hash. The server retains the resulting signature alongside the encrypted
data, but cannot verify or modify it the client has the sole ability to check the signature upon
later retrieval. A final blob object might conceptually include four inline fields:

1. owner (the user’s public key),
2. key (the encrypted symmetric key),

3. payload (the ciphertext),
4. signature (the digital signature over the ciphertext).

Once uploaded, the server treats this blob as an opaque object it stores the four parts exactly as
given, without any ability to decrypt or understand them. Since all core cryptographic
operations encryption, decryption, signing, and verification happen entirely on the client side,
the server remains absolutely blind to the actual contents, ensuring robust zero-trust storage.

5. Encrypted API Transactions

Once the client and server have established a secure communication channel using Elliptic Curve
Diffie-Hellman (ECDH), all subsequent API requests and responses are encrypted symmetrically
using the derived shared secret. This shared secret is computed independently on both sides by
combining the client’s private key with the server’s public key. Each API request from the client
includes two essential elements: a field containing the encrypted payload (for example, labeled
simply as "data"), which allows the server to derive the same shared secret. The actual request
content parameters, data, metadata is entirely encrypted using this shared key, ensuring that
only the intended recipient can decrypt and process it. The server, having access to its own
private key and the client’s public key (saved in the user’s session or in payload for state-less
model), computes the same ECDH shared secret and uses it to decrypt the request payload. It
then processes the request, encrypts the response with the same shared key, and returns it to
the client. This mechanism ensures full confidentiality even if the underlying TLS connection is
terminated or observed by an intermediary such as a reverse proxy. The payload remains
opaque, as only the client and server possess the necessary private keys to derive the shared
encryption key. In effect, every APl interaction between the client and server becomes a sealed
message exchange, layered on top of any transport protocol, with payload visibility restricted
strictly to the endpoints in possession of valid key material.

6. Defense Against Reverse Proxies

Transport Layer Security (TLS) is commonly used to protect web traffic in transit. However, in
real-world deployments, TLS often terminates at reverse proxies such as Cloudflare or Nginx
before reaching the backend application server. This architecture exposes plaintext content at
the proxy layer, making it possible for these intermediaries to inspect, log, or even modify
sensitive user data, despite the appearance of a secure HTTPS connection.

Blindflare is specifically designed to render such inspection meaningless. All sensitive data is
encrypted at the application layer by the client before it ever enters the network stack. This
means that even when a reverse proxy decrypts TLS traffic, the actual content of requests and
responses remains unintelligible. From the perspective of the proxy, all it can observe are public
keys used for secure communication, encrypted data blobs, and cryptographic hashes of
authentication keys. These elements contain no readable metadata, no passwords, and no
plaintext user content. They offer no vector for impersonation, leakage, or tampering without

detection. By applying end-to-end encryption independently of the transport layer, Blindflare
ensures that no trusted intermediary no matter how privileged can access or interfere with user
data. This design decisively closes the gap that TLS alone cannot protect, making reverse proxies
effectively blind to the application's inner workings.

7. Security Properties

Blindflare is designed to withstand a wide range of modern security threats by minimizing trust
in the server and eliminating any transmission of sensitive data in plaintext. In the event of a
backend server compromise, attackers gain nothing of value, as the server never receives
private keys, plaintext data, or passwords. All it stores are encrypted blobs and hashed
identifiers, which are computationally infeasible to reverse. If the database is breached, the
outcome is similarly benign. Since all stored data is encrypted client-side and signed digitally,
there is no readable user information available to attackers. The stored key hashes also reveal
nothing about the actual private keys or passwords due to the strength of the cryptographic
hash functions used. Even threats that operate at the network layer, such as inspection by
reverse proxies, are neutralized. Since all application-layer data is encrypted independently of
TLS, terminating TLS at gateways like Cloudflare yields only cipher-text. These intermediaries can
access only public keys, encrypted payloads, and hashed authentication tokens none of which
can be leveraged to reveal user data or impersonate users. The system is robust against
password theft through the server because the server never receives a password in any form.
Key derivation occurs client-side, and only derived hashes are sent. As a result, even if the server
is compromised, it cannot leak credentials. User impersonation attacks based on password
guessing are also ineffective. Since authentication is entirely key-based and the private key is
never transmitted or stored server-side, an attacker would need to guess or steal the user’s
private key, which is practically infeasible under standard cryptographic assumptions. Lastly, the
system defends against blob tampering. Every encrypted blob is digitally signed using the client’s
private key. This signature is verified on the client before any blob is loaded or processed,
ensuring that tampered data is rejected. Overall, Blindflare transforms the server into a passive
storage component while shifting all cryptographic control to the client, effectively neutralizing
the most common and dangerous classes of security threats.

8. Conclusion

Blindflare demonstrates that web services can operate without seeing user secrets. By combining
elliptic curve cryptography, encrypted blob storage, and client-side key management, we
eliminate the server from every critical cryptographic operation. The introduction of ztStorage
provides a clean abstraction: the server holds encrypted blobs but never understands them.
Authentication, authorization, and verification all happen on the edge the user’s device.

The user owns the keys. The client owns the logic. The server becomes a courier not a
gatekeeper.

References

[1] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.

[2] Daniel J. Bernstein. Curve25519: New Diffie-Hellman Speed Records, 2006.

[3] Boneh, D., & Shoup, V. A Graduate Course in Applied Cryptography, 2020.

[4] NIST Special Publication 800-57, Recommendation for Key Management — Part 1, 2019.

[5] RFC 7748, Elliptic Curves for Security, IETF, 2016.

[6] W. Diffie, M. Hellman. New Directions in Cryptography, IEEE Transactions on Information
Theory, 1976.

[7] RFC 8017. PKCS #1: RSA Cryptography Specifications Version 2.2, IETF, 2016.

